
Interim Report 2

By Jade Millan

Work Done

The first thing done after the previous report was to attempt to unscale the data in the data

formatting/viewing file. This resulted in a larger final loss reported by the model after training,

0.114. Testing the controller indicated that this was way off and not the right method. Debugging

was done to figure out the issue, such as unscaling the model states. Scaling the actions but not

the states resulted in poor results as well. Therefore, it appeared the initial belief of the

simulation results being off due to data unscaling wasn’t right. The default data scaling seemed

to be the best option. Attempts were made to modify the layers in the model setup, changing

their node count from 256 to 512 to 32. The loss function indicated that 64 nodes were the ideal

amount. However, the simulation results were still poor.

The loss function was then examined to determine further issues. The default loss

function was mean square error (MSE) and mean absolute error (MAE) and Huber loss were also

tested. MAE resulted in the most realistic final loss based on the performance of the model on

the test data. Optimizers were also tested, with the default being Adam. AdamW and RMSprop

were also tested, and little to no change in the model performance was detected. AdamW was

chosen as it proved to being a little more robust and computational expense wasn’t an issue.

The next phase of the project included a new model format in mlpfile. The mlpfile was

integrated with a final loss of about 0.03. The resulting performance on the test data appeared

much improved.



Figure 1: Initial mlpfile Test Data Performance

The simulation results were still quite off after this, so checks were made to ensure that

the mlpfile was being saved correctly. Integration of the mlpfile proved a little difficult as

integrating it in the simulation and data analysis files required a lot of code rewriting. This

included the data being returned as a string in some cases (nearly impossible to work with). A

solution to this was to reshape the actions array and ensure it was the right type.

After the mlpfile was fully integrated into the simulation, the next aspect of the project

concerned improving the simulation results.



Figure 2: Post-Simulation Results With Poor Pipeline Integration

Some minor tweaks to the simulation setup were made, and the entire pipeline was rerun.

This time, the simulation results were significantly improved.

Figure 3: Post-Simulation mlpfile Results (left) Versus Original Results (right)

While not easily quantifiable, these graphs clearly show improvement with a noticeably

higher policy convergence on the expert. However, it was observed that restarting the kernel or

turning off the computer resulted in the data appearing like Figure 2 again. This shouldn’t

happen, and indicates a persisting issue. such as implementing early stopping and TensorBoard

techniques for the model. With TensorBoard implementation, different amounts of epochs were

tested.



Figure 4: TensorBoard Loss Function Graphs

It was observed that more epochs up to 200 were the most ideal, with the loss function

plateauing around ~180 epochs. Retraining the model and running the simulation saw improved

training results. However, the post-simulation data was still quite poor. While doing this, it was

noted that running the simulation would cause different results in the final data analysis, but this

should only happen after the controller is run, not the visual part of the simulation in rviz. The

final controller results were still very poor after all of this and it’s clear the model isn’t

underfitting or overfitting the training data, a clear indication that the model is generally

performing well. This gives a clue to the fundamental issue, the pipeline structure.

Figure 5: Pipeline Structure



Figure 5 shows the flow and structure of how the data is formatted, trained, and then used

by the controller before being demonstrated by the simulation. The red arrow indicates the

current happenings, that for some reason viewing the simulation affects or changes the controller

results. The controller results should be very consistent as long as the model isn’t altered or

retrained, but it is very inconsistent and affected by things such as the kernel restarting or other

simulation factors. To further examine this, the post-simulation data viewing was improved.

Figure 6: Improved Controller Results Viewing

The clearer look at the controller performance shows little to no action by the policy in

most states, a sign of not poor model performance, but a fundamental issue with either the

controller, simulation, or pipeline.



Remaining Goals

The most pressing goal for the remainder of the project is to finish correcting the

controller performance and get the policy to be run effectively on the robot in simulation so that

it is understood it works on hardware. After this is accomplished, the next goal would be to

devise a unique behavior such as hurdling to train the robot to do. A tertiary goal would be to

design hardware that could actuate the ankles of the robot and make them active.


