
Interim Report 1
By Jade Millan

Background

The current project is focused on designing a learning based controller for a bipedal

walking robot. This robot is motivated by the advantages of legged robots [1]. Legged robots, in

particular compared to wheeled robots, are better at navigating complex terrain, such as terrain

with lots of bumps or hills. Recently, legged robots have been applied in cave exploration,

package delivery, and inspection tasks for offshore power plants [2]. Legged rovers would also

be a great boon for space exploration. The surfaces of Mars and the Moon are rocky and

mountainous, meaning that current wheeled rovers have to take great care when planning their

paths, leading to more inefficient and ineffective exploration. Current work in the Autonomous

Robotics and Control Laboratory (ARCL) has consisted of designing a bipedal robot robust to

rough terrain. It is a passive ankle robot focused on leg motion planning and testing learning

based controllers. It is depicted below:



Currently, the robot walks via a capture-point inverse kinematics system and inverse

dynamics system. This was derived from modeling the leg movements as an inverted pendulum.

A “capture point” is a desired point for the robot’s foot to be placed during the walking cycle,

and it consists of both position and velocity dimensions. The series of capture points the robot

walking cycle will follow can be discretized in the below equation:

(1)

We have m as a whole number, as the capture point, u as the control input, as theξ 𝑇
𝑠

step time (taken to be constant), and as the natural frequency of the inverted pendulum model.ω

This type of controller and programming certainly is effective for the flat and firm lab surface,

but it lacks the adaptability and robustness a learned controller would have on different surfaces.

Approach

Currently, some software architecture is in place to create a learning controller, but there

are still a few issues with its implementation. It interfaces well with the simulation, but

post-simulation analysis indicates that the learning controller is not converging well enough to

the data. Below is one example of the graphs generated to analyze the controller performance

post-simulation.



Figure 2

The above figure compares the feedforward torques generated during the simulation by

both the inverse kinematics (“Expert”) and the learning controller (“Policy”). While the general

shape of the policy is right, it appears to be incorrectly scaled to follow the expert. I am expected

to find out the scaling issue and reformat the data so that the policy converges better onto the

expert. Additionally, I am expected to speed up the code process as the controller can take too

long and cause simulation lag. The simulation being slowed down is less of an issue, as focusing

on producing the correct results should take priority.



Work Done

The past couple of weeks have been dedicated mostly to setup and learning key

background information. Setup consisted of dual booting Linux and Windows, downloading

necessary software and repository on the new Linux computer (such as ROS2 and Mujoco), and

cloning the current biped repository with all of the code for running the learning controller on the

simulation. This has included successfully running the simulation and the learning controller

while doing basic training on it. Further work has included reading the current biped paper by the

ARCL as well as starting some reading on imitation learning. Some progress has been made on

improving the learning controller, but a clear issue with convergence remains. Attempts to fix the

learning controller have mostly been centered around changing how the data is scaled and have

mostly been unsuccessful. Attempts have included: using different scalers such as Normalizer

and StandardScaler instead of QuantileTransformer from sklearn (a Python machine learning

library) on the input data, unscaling the input data completely, using a MinMax scale on the input

data after scaling it with QuantileTransformer. The last idea was motivated by the fact that the

data maintains a good shape horizontally, but perhaps needs to be scaled vertically to better fit

the Expert.

Challenges and Problems

The main problem of the scaling issue remains, as I have yet to resolve the issue. I have

reached out to Leo Zhang, the student who worked on this project last year, for his thoughts as he

was the one who originally suggested that this issue might be the cause of the inaccurate

learning. A further challenge is my general lack of machine learning knowledge. While I have

taken multiple robotics courses and an introductory controls course, I have yet to learn machine



learning formally. Learning about model training at the same time as trying to fix a machine

learning model is proving to be difficult. I anticipate that, assuming the software gets resolved,

further issues may be encountered when testing the algorithm on the robot’s hardware, or on

different surfaces. Changing the scaling of the data to better help the Policy converge to the

Expert may also result in unexpected issues.

References

[1] Elena-Sorina Lupu, Learning and Control of Legged Robots Traversing Unstructured

Terrain for Agile Space Exploration. 2023.

[2] C. Gehring, P. Fankhause, L. Isler, R. Diethelm, S. Bachmann, M. Potz, L. Gerstenberg,

and M. Hutter, “Anymal in the field: Solving industrial inspection of an offshore hvdc

platform with a quadrupedal robot,’ in Field and Service Robotics (G. Ishigami and K.

Yoshida, eds.) (Singapore), pp. 247-260, Springer Singapore, 2021.


