
Controlling A 
Bipedal Robot Via 
Machine Learning

By Jade Millan



Roadmap

Introduction

Background

Progress Made

Conclusions



Problem Introduction

- The goal of this project was to better understand how to use machine 

learning to control a bipedal robot’s walking behavior in a novel direction. 

- The novel direction chosen was to use behavior cloning on a a 

capture-point inverse kinematics system and inverse dynamics system.

- The end goal is to have successful tests in simulation before transferring 

the model to hardware



Why Legged Robots?

Less CapableMore Robust

Legged robots are currently being used in cave exploration, package 
delivery, and inspection tasks for offshore power plants!



Hardware and Kinematics

The current hardware is a passive ankle 

robot focused on leg motion planning 

and testing learning based controllers

Currently, the robot walks via a capture-point inverse kinematics 

system and inverse dynamics system. A “capture point” is a desired 

point for the robot’s foot to be placed during the walking cycle.

This system will be referred to as the “expert” for the rest of the presentation



Why Machine Learning (ML)?

Compared to kinematics, ML offers more adaptability and robustness

- Kinematics works well on 
a hard, flat, and often 

known surface
- The adaptability of a 
learned controller makes 
traversing rough terrain 

easier
- Traversing rough terrain 

is a particular challenge 
for bipedal robots



ML Background

The two fundamental types of ML used are Behavior Cloning 
(BC) and Reinforcement Learning (RL)

Analogy to Behavior Cloning Analogy to Reinforcement 
Learning



Previous Progress

- Previous project work included setting up the robot simulation 

and starting a BC model

- The simulation of the robot utilized Mujoco and ROS2, with 

simulation viewing done in RVIZ



Old Pipeline Structure

View and Transform 
Simulation Data

Train Model on Data View Model Test Results

Set Up and Run 
Controller

Run Simulation

View Simulation Results



Progress With Behavior Cloning

After setting up (downloading Linux, 
necessary code, etc), the first step was to 
verify the integrity of the pipeline

After making a few small changes to get 
things working, the first test and simulation 
results were able to be viewed

There are 41 joints or “states”, each with their 
own sets of actions for a given time

The test results were quite good, while the 
simulation showed convergence issues

Test results for one joint

Simulation results for five joints



Biped Running With Expert Only

http://www.youtube.com/watch?v=QXrxSlsH6GA


Biped Running With Expert and Policy

http://www.youtube.com/watch?v=nL_OXZj_FPo


Biped “Running” With Only Policy

http://www.youtube.com/watch?v=SgNpyKnjCDs


Major Fixes

Issue: Slow simulation

Fix: Introduce mlpfile format

Issue: Poor model/simulation performance

Fix: Use TensorBoard, improved policy architecture, 
and different model parameters

Issue: Poor Data Visualization

Fix: Change code setting up test data and simulation 
data graphs

Issue: Running pipeline multiple times without 
changing any code results in different simulation 
performances

Fix: Investigate pipeline integrity

Before mlpfile on old policy format

With mlpfile



Simulation With Mlpfile

http://www.youtube.com/watch?v=hKPzngbcWBk


Improving Data Visualization



After multiple runs, the model performance gets 
worse and the robot still crashes, despite not 

changing any code



Verifying Model Quality

Using TensorBoard, we can 
visualize the outputs of the 
loss functions on both the 

training and test data

Improved test data 
performance shows 
mostly great model 

performance, so what is 
the issue?



Verify Pipeline Integrity

Idea: Try to see if 
running the 
simulation for longer 
affects the training 
performance or 
length.

Simulation was run 
for much longer than 
usual.

Running the pipeline 
again resulted in 
much slower training 
time.

This shouldn’t 
happen, indicative of 
a pipeline error!



Old Pipeline

Solution: Remove the red arrows and create a training 
data file that doesn’t get overwritten by the simulation



New Pipeline

Created a new training data file with ~370,000 lines of data, compared 
to the typical ~7k lines of data typically output by the simulation



Issues Persist

Despite training now taking 4-5 hours instead of 5-10 
minutes, we still see the same issues, perhaps the issue is 
the model?



Introduce CQL

Offline RL is a form of learning 
that uses a static dataset and 
attempts to use concepts like 
rewards and random action 
sampling to learn a behavior.

Conservative Q-Learning (CQL) 
is a form of offline RL that 
introduces penalties for actions 
outside of the training data 
distribution.



Progress With CQL

- CQL is overall much harder to use 
as it as many more parameters to 
tune and a more sensitive loss 
function.

- CQL also relies on more 
architecture. Instead of a policy 
and policy manager, it requires a 
sample buffer, a policy, a 
Q-Network, and a manager.

- One of the more parameters to 
turn is the “cql_alpha” parameter, 
which scales the penalty for out of 
distribution actions.

Green: 0.5 Purple: 0.1



CQL Test Results



CQL Simulation Results



Conclusions

- While improvements and progress were made on the pipeline and model 

training, getting the data to converge enough 

- While more robust and “better” at learning behaviors, offline RL is 

generally much more difficult to use and isn’t necessarily best suited for 

this task

- When a BC model encounters slightly out of distribution states, it has a 

strong potential to diverge from the typical behavior completely (generally 

avoided by CQL). This causes the robot to crash

- When it comes to these models, testing on simulation is much more 

convenient than testing on hardware

- These models are more difficult to implement than online RL, the most 

common ML model in walking robotics



Personal Takeaways

- I came into this project with no prior ML experience (I’m a 

Mechanical Engineer)

- While it was difficult to learn on the fly, I gained a lot of 

knowledge about an area of robotics I have never seen before

- A lot of ML work that I did was very “black box” in nature, it was 

difficult to fully understand what the model was doing and why 

every time it was trained



Future Work

- Both the CQL and the BC models have room for improvement, 

whether it’s continuing to adjust the model parameters or modifying 

the model architecture

- There may be some issue with the simulation or pipeline that need 

to be corrected that limit the output of the BC model

- The training data could be improved or made more robust

- A different model may perform better than the two tested

- The biped could eventually be taught novel behaviors such as 

hurdling



Acknowledgements

Mentor: Soon-Jo Chung

Co-Mentor: Sorina Lupu

Program: SURF/SFP

Special Thanks to the Class of ‘52 Fellowship



Questions?

Jade Millan


