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Abstract—This project aims to design and train a machine learning model that can be trained and
implemented onto a controller. The controller (referred to as the policy) will be tested in simulation
and have its robustness verified before being implemented on the bipedal robot hardware. The
effectiveness of the policy will be verified in comparison with an “expert”, which allows the robot to
walk via a capture-point inverse kinematics system and inverse dynamics system. A successful test and
implementation of this controller will result in the robot being able to walk autonomously and be able
to learn how to walk on different surfaces other than the smooth and firm lab surface.

I. INTRODUCTION

A. Background Information

The primary goal of this project was to establish an effective learning based controller to control a bipedal
robot’s walking gait in a novel direction. The novel direction chosen was to use behavior cloning on a capture-point
inverse kinematics system and inverse dynamics system. The end goal was to have successful tests in simulation
before transferring the model to hardware. Traditional control methods for bipedal robots like inverse kinematics
(IK) and inverse dynamics (ID) provide effective solutions but lack flexibility in adapting to dynamic environments.
A learning-based controller has the potential to adapt better by learning directly from expert demonstrations.

The current hardware is a passive ankle robot focused on leg motion planning and testing learning based
controllers [1].

Figure 1: Current Hardware

A “capture point” is a desired point for the robot’s foot to be placed during the walking cycle. The capture
point system can be discretized in the below equation.

(1)

We have m as a whole number, as the capture point, u as the control input, as the step time (taken toξ  𝑇
𝑠

be constant), and as the natural frequency of the inverted pendulum model. This model will be referred toω
henceforth as the “expert”.



B. Approach

Compared to kinematics, machine learning (ML) offers much more adaptability and robustness. Kinematics
works well on known surfaces, but as focus in robotics shifts to unknown surfaces with varying texture. The
adaptability of a learning controller offers more success in a rougher terrain.

We chose to focus on learning in legged robots as they are more robust to different environments such as
rough terrain and steep hills [2]. This project involves developing and testing such a controller for a bipedal robot,
improving its ability to walk and balance in varied terrains. Initial issues in policy convergence, data scaling, and
pipeline stability have presented challenges but also opportunities for optimization.The project leverages behavior
cloning, training a neural network to learn the expert policy . Data from simulations of the bipedal robot is
collected, scaled, and fed into the model. The model is trained using various architectures, loss functions, and
optimizers to improve its learning performance. Key goals include improving simulation results and ensuring
consistent controller behavior in both simulation and hardware environments.

The two main types of ML used in the project were Behavior Cloning (BC) and Reinforcement Learning
(RL). In particular, BC was used to imitate a dataset of proper walking behavior demonstrated by the robot in
simulation using the expert. A form of offline RL known as “Conservative Q-Learning” (CQL) was used to attempt to
improve upon the BC performance.

II. WORK DONE

A. Prior Work

Work done prior to my start on the project included initial robot simulation setup, basic BC model setup
and pipeline setup. The robot simulation was done in RVIZ using Mujoco and ROS2. I would have to redo the ROS2
and Mujoco setup on my own device to do the project.

Figure 2: Image of the Robot in Simulation



Figure 3: Old/Initial Pipeline Structure

B. Progress With Behavior Cloning

After further setup (downloading Linux, necessary code, and repositories), the first step was to verify the
integrity of the pipeline. A few small changes were made to get the pipeline working and producing sensible results.
The model consists of 41 joints or “states”, each with their own sets of actions for a given time. Initial model test
results indicated strong performance, while the simulation showed convergence issues.

Figure 4: Test Results for One Joint

Figure 5: Simulation Results for Five Joints



Links to videos of the robot in simulation under different circumstances are provided below.

Simulation Conditions YouTube Video Link

Biped Running with Expert Only https://youtu.be/QXrxSlsH6GA

Biped Running with Expert and Policy https://youtu.be/nL_OXZj_FPo

Biped “Running” with only Policy https://youtu.be/SgNpyKnjCDs

Simulation with Mlpfile (Explained Later) https://youtu.be/hKPzngbcWBk

Table 1: Simulation Conditions and YouTube Visualization

C. Major Issues and Fixes

As I started working on improving the model and looking for standout issues, I became aware of a variety
of flaws in the project. One of the most obvious issues was the relatively slow simulation speed of the robot’s
walking. This was solved by introducing the mlpfile format, a more efficient BC model saving format that sped up
the robot’s walking in simulation. This can be seen in the last video in Table 1. Introducing this new format also
resulted in noticeable simulation performance.

Figure 6: Before mlpfile on Old Policy Format

Figure 7: With mlpfile Format

Another issue identified was the poor data visualization for the robot performance post-simulation. I
reprogrammed the visualization code to better set up the test data and simulation graphs.



Figure 8: Improved Simulation Data Visualization

Progress in these areas then led me to investigate deeper issues: the model quality and pipeline integrity.
The simulation at this point was still showing the robot crashing and post-simulation data still showed convergence
issues (visible in Figure 8). Using TensorBoard, I was able to visualize the outputs of the loss functions on both the
training and test data.

Figure 9: Visualization of the BC Model Test Loss and Training Loss Functions

The main point of this visualization is to help identify cases of over-fitting, that is if the loss function ever
starts to increase after plateauing. This means we have essentially trained our model too much on the test data,
and it won’t perform well on new data outside of the test sample. TensorBoard results, which show this wasn’t the
case. Furthermore, the test data performance, with enhanced visualization, still indicated strong model
performance.



Figure 9: Improved Test Data Visualization

This information would then indicate that the poor simulation performance must have to do with the
pipeline itself. Further investigation would show that running the pipeline, as shown in Figure 3, multiple times
without changing any code resulted in different simulation results. This would mean somehow, repeatedly training
or visualizing the robot’s performance affects future iterations, which shouldn’t happen. The results of the model
training should be repeatable and identical.

Figure 10: Robot Crashing in Simulation Data

D. Pipeline Verification

My first idea was to try running the simulation for longer to see if this would produce more training data or
increase training time. If so, this would prove that simulation was being mistakenly recycled into future model
training.



Figure 11: Longer Simulation Runtime

Running the simulation much longer than usual indeed resulted in much slower training time as suspected.
This shouldn’t happen, this was indicative of a pipeline error! The solution in this case would be to remove the red
arrows as depicted in Figure 3, and have the pipeline run linearly instead of cyclically.

Figure 12: New Pipeline

This new pipeline would also require a new, static, training data file that includes much more robust
behaviors. I manually created a new file with ~370,000 lines of data (the typical simulation output used to train
was around ~7,000 lines). This file had behaviors beyond just walking in a straight line at a constant speed, such
as walking in all directions at different speeds as well as quick direction changes. After this, training time went from
ten minutes to four to five hours. Despite these changes, the model performance remained poor.



Figure 12: Model Convergence Issues Persist

III. WORK WITH CQL

A. CQL Introduction

After hitting a metaphorical wall with the BC model, it was time to try to use a more robust model type to
see if the robot could be taught to walk in a different offline manner. Offline RL is a form of learning that uses a
static dataset and attempts to use concepts like rewards and random action sampling to learn a behavior.
Conservative Q-Learning (CQL) is a form of offline RL that introduces penalties for actions outside the training data
distribution.

Figure 13: Explanation of CQL

B. Work Done with CQL

While working with CQL, there immediately became clear and obvious differences in how the model would
perform and how to tune it. CQL is much harder to use as it has many more parameters to tune and a more
sensitive loss function. CQL also relies on more architecture. Instead of a policy and policy manager, it requires a
sample buffer, a policy, a Q-Network, and a manager. One of the more parameters to turn is the “cql_alpha”
parameter, which scales the penalty for out of distribution actions. In Figure 14, this parameter is set to 0.5 for the
green line, and 0.1 for the purple line.



Figure 14: CQL Loss Function Performance

Overfitting was a stronger concern for this model, but once resolved performance issues still persisted.

Figure 15: CQL Test Results

Figure 16: CQL Simulation Results

At this point, the time for working on the project was up.



IV. CONCLUSIONS

A. General Conclusions

Overall, improvements and progress were made on the pipeline and model training. However, getting the
data to converge enough for consistent walking remained elusive. I also learned more about the different types of
offline ML models. While more robust and “better” at learning behaviors, offline RL is generally much more difficult
to use and isn’t necessarily best suited for this task. When a BC model encounters slightly out of distribution states,
it has a strong potential to diverge from the typical behavior completely (generally avoided by CQL). This causes
the robot to crash. When it comes to these models, testing on simulation is much more convenient than testing on
hardware. These models are more difficult to implement than online RL, the most common ML model in walking
robotics.

B. Personal Takeaways

I came into this project with no prior ML experience as my undergraduate major is in Mechanical
Engineering and a lot of my focus up to this point has been on hardware. It was difficult to learn ML from scratch
and pick up all sorts of new topics during this project, but I am grateful to have gained so much knowledge in an
area of robotics I have never worked in before. I walk away with a better understanding of ML in the robotics field,
such as how very “black box” it is in nature and the value of discrete, kinematic, robotic control systems.

C. Future Work

Both the CQL and BC models have room for improvement, whether it’s continuing to adjust the model
parameters or modifying the model architecture. There may be some further issues with the simulation or pipeline
that clamp the values of the BC model incorrectly that need to be fixed. The training data collection wasn’t done
autonomously, it was done via me steering the robot on an Xbox controller. An autonomous training data collection
method that is more steady and robust could improve the model performance. Perhaps the right model hasn’t been
identified yet, and a tertiary offline ML model could be used that would do better than both BC and CQL. Once the
biped gets walking, it could be taught novel offline behaviors such as hurdling.
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